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Introduction

Hydrologically precipitation and temperature are undoubtedly important variables. Precipitation is the driving force of the hydrologic system. Temperature influences evapotranspiration and the precipitation phase (rain, snow) and therefore plays an important role in the water balance. Precipitation is characterised by both high spatial and temporal variability. Long-term forecasting can be done only in a stochastic way, due to the highly nonlinear relationships governing the rainfall dynamics. This renders long term deterministic forecast impossible.

The purpose of this contribution is to try to detect deterministic chaos in precipitation and temperature series with high time resolution in order to investigate their chaotic behavior, and determine their predictability horizon. The data used is taken from a climatic station located in the experimental basin Jizerka, on the top of the Jizera Mts. in the north part of the Czech republic.
A chaotic system is defined as a deterministic system in which small changes in the initial conditions may lead to completely different behaviour in the future. Signal from the chaotic system is often, at first sight, indistinguishable from a random process, despite being driven by deterministic dynamics.

To date, a lot of attention has been devoted to analysing various natural processes and elements by means of deterministic chaos approach e.g. Kurths and Herzel (1987), Henderson and Wells (1988), Rodriguez-Iturbe et al. (1989), Sharifi et al. (1990), Jayawardena and Lai (1994), Palmer et al. (1996), Sivakumar et al. (1998), Stehlík [1999].

Methods

The theory of deterministic chaos enabled the development of new methods for analysing the observed time series. In this study the Lyapunov exponent method (Wolf et al., 1985) is used.

Phase space

The time series is assumed to be generated by a nonlinear dynamic system with d degrees of freedom. It is therefore necessary to construct an appropriate series of state vectors X d (t) with delay coordinates in the d-dimensional phase space:
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where  is an appropriate time delay. The trajectory in the phase space is defined as a sequence of d dimensional vectors. If the dynamics of the system can be reduced to a set of deterministic laws, the trajectories of the system converge towards the subset of the phase space, called the attractor. 

The time delay  can be defined by means of an autocorrelation function or, as used in this study, the average mutual information method (Fraser and Swinney, 1986). This method defines how the measurements X(t) at time t are connected in an information theoretic fashion to measurements X(t+) at time t+ (Abarbanel, 1996). The average mutual information is defined as: 
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where i is total number of samples. P(X(i)) and P(X(i+)) are individual probabilities for the measurements of X(i) and X(i+). P(X(i), X(i+)) is the joint probability density for maesurements P(X(i)) and P(X(i+)). The appropriate time delay  is defined as the first minimum of the average mutual information I(). Then the values of X(i) and X(i+) are independent enough of each other to be useful as coordinates in a time deay vector but no so independent as to have no connection with each other at all. 

Lyapunov exponents

Lyapunov exponents are long time average exponential rates of divergence or convergence  of nearby states in the phase space. If a system has at least one positive Lyapunov exponent, then it is assumed to be chaotic. There are as many Lyapunov exponents as there are degrees of freedom in the system. According to Abarbanel (1996) the local and global Lyapunov exponents can be distinguished.

Local Lyapunov exponents i(Xd(t),L), i = 1..d depend on the point on the attractor Xd(t) where the perturbation is initiated and the number of time steps L. When L ( ( (or in practice becomes large enough) these exponents become independent of X d(t). Average local Lyapunov exponents are obtained by averaging over the state space variable X d(t). This average local Lyapunov exponent does not depend on the initial conditions of the orbit, and converges as a power of L to the global Lyapunov exponent.

The largest global Lyapunov exponent (1) determines the average horizon of global predictability for the system. Considering two points that are close in state space at some time t, their distance at time t’> t is the original distance multiplied by 
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where M is the number of replacement steps, L(tk-1) is the Euclidean distance between the point {X(tk-1), X(tk-1-), X(tk-1-2), …, X[tj-1-(m-1)]}  and its nearest neighbour, and L’(tk) is the evolved length of L(tk-1) at time tk
Before computing the largest Lyapunov exponent, the dimension d of the phase space has to be determined. In this study the dimension was computed using the false nearest neighbors method. This enables the determination of the dimension in which the attractor is unfolded (Kennel et al., 1992).

Results and discussion

Precipitation and temperature data from the climatic station Jizerka, measured in 30 minute time steps have been analysed. The precipitation series contains 7500 points: from 28th May till 31st October 1997, and the temperature series has 17520 points: from 1st November 1997 till 31st October 1997.

The results are summarized in Table 1. By means of the average mutual information method the time delay  was determined. It is six times higher than the sampling interval for the precipitation (180 min), and seventeen times higher than that for temperature (510 min). 

TABLE 1
Time lag phase space dimension d and global Lyapunov exponents i for pre​cipitation and temperature time series

Variable
min]
n
1
2
3
4
5
6
7
8
9

Precipitation
180
9
n.d.
5.76
3.94
2.49
1.24
2.11
1.53
0.15
-0.63

Temperature
510
5
0.62
0.42
0.21
-0.08
-0.76
-
-
-
-

The dynamic model needed to describe the data has 9 dimensions for precipitation and 5 for temperature. This indicates the presence of more degrees of freedom in the system governing the precipitation series, than in that governing temperature series.
The first Lyapunov exponent for precipitation data is not available, as its computation is mathematically not defined. In addition to this, the sum of the remaining 8 exponents is unrealistically high (16.59). However this sum should be negative as required for a realistic dissipative system. These problems could be due to a large number of zeros (intervals with no precipitation) in the series. High intermittence of rainfall occurence leads to 6636 zeros (88 % of data). As mentioned by Sivakumar (2000) this is a common problem in hydrological applications of chaos theory.

For temperature series all Lyapunov exponents are defined. The largest exponent is greater then zero. Therefore the deterministic chaos in the temperature series is proved. Two exponents are negative. The sum is larger than zero, however not so distinctly as in the case of precipitation. Therefore, an interpretation of the results has been allowed. The largest Lyapunov exponent 1 equals 0.62. So it is possible to predict the dynamics forward in time about
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where Ts = 30 min (the sampling interval). None of the exponents is zero which would indicate that the underlying dynamics comes from a system of differential equations. However even in the case that the equations would be known, the predictions could not be better than the above computed predictability horizon. 

Conclusions

The results presented in this paper can be summarized as follows:

1.
Precipitation and temperature time series with sampling intervals of 30 minutes have been analyzed using methods to detect deterministic chaos. 

2. Average mutual information was used to determine a nonlinear correlation time for both series. 

3. Degrees of freedom operating in the observed data were determined by means of the false nearest neighbors method. 9 degrees of freedom were found to govern the dynamics of the  precipitation series, and 5 that of temperature. 

4.
Local and global Lyapunov exponents have been computed. The highly intermittent nature of the rainfall causes problems with the interpretation of the Lyapunov exponents for the precipitation series. Realistic results have been obtained for the temperature series. Maximum Lyapunov exponent is larger then zero. This proves the chaotic dynamics of the system and hence a sensitive dependence on initial conditions.

5. A predictability horizon has been computed for temperature series.
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